A shape- and texture-based enhanced Fisher classifier for face recognition
نویسندگان
چکیده
This paper introduces a new face coding and recognition method, the enhanced Fisher classifier (EFC), which employs the enhanced Fisher linear discriminant model (EFM) on integrated shape and texture features. Shape encodes the feature geometry of a face while texture provides a normalized shape-free image. The dimensionalities of the shape and the texture spaces are first reduced using principal component analysis, constrained by the EFM for enhanced generalization. The corresponding reduced shape and texture features are then combined through a normalization procedure to form the integrated features that are processed by the EFM for face recognition. Experimental results, using 600 face images corresponding to 200 subjects of varying illumination and facial expressions, show that (1) the integrated shape and texture features carry the most discriminating information followed in order by textures, masked images, and shape images, and (2) the new coding and face recognition method, EFC, performs the best among the eigenfaces method using L(1) or L(2) distance measure, and the Mahalanobis distance classifiers using a common covariance matrix for all classes or a pooled within-class covariance matrix. In particular, EFC achieves 98.5% recognition accuracy using only 25 features.
منابع مشابه
Facial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملFace Recognition Using Shape and Texture
We introduce in this paper a new face coding and recognition method which employs the Enhanced FLD (Fisher Linear Discrimimant) Model (EFM) on integrated shape (vector) and texture (‘shape-free’ image) information. Shape encodes the feature geometry of a face while texture provides a normalized shape-free image by warping the original face image to the mean shape, i.e., the average of aligned s...
متن کاملFace Recognition in Thermal Images based on Sparse Classifier
Despite recent advances in face recognition systems, they suffer from serious problems because of the extensive types of changes in human face (changes like light, glasses, head tilt, different emotional modes). Each one of these factors can significantly reduce the face recognition accuracy. Several methods have been proposed by researchers to overcome these problems. Nonetheless, in recent ye...
متن کامل3D Face Recognition system Based on Texture Gabor Features using PCA and Support Vector Machine as a Classifier
Pioneer 2D face recognition based on intensity or color images encounters many challenges, like variation in illumination, expression, and pose variation. In fact, the human face generates not only 2D texture information but also 3D shape information. In this paper, the main objective is to analyze what contributions depth and intensity with texture information make to the solution of face reco...
متن کاملAn integrated shape and intensity coding scheme for face recognition
This paper introduces a new face coding scheme which employs an Enhanced Fisher Classifier (EFC) operating on integrated shape and intensity features. The dimensionalities of the shape and the intensity image spaces are first reduced using Principal Component Analysis (PCA), constrained by the EFC for enhanced generalization. The reduced shape and the intensity features are then integrated thro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2001